\(\int \frac {a+b \log (c (d+\frac {e}{x^{2/3}})^n)}{x} \, dx\) [512]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 55 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=-\frac {3}{2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (-\frac {e}{d x^{2/3}}\right )-\frac {3}{2} b n \operatorname {PolyLog}\left (2,1+\frac {e}{d x^{2/3}}\right ) \]

[Out]

-3/2*(a+b*ln(c*(d+e/x^(2/3))^n))*ln(-e/d/x^(2/3))-3/2*b*n*polylog(2,1+e/d/x^(2/3))

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2504, 2441, 2352} \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=-\frac {3}{2} \log \left (-\frac {e}{d x^{2/3}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )-\frac {3}{2} b n \operatorname {PolyLog}\left (2,\frac {e}{d x^{2/3}}+1\right ) \]

[In]

Int[(a + b*Log[c*(d + e/x^(2/3))^n])/x,x]

[Out]

(-3*(a + b*Log[c*(d + e/x^(2/3))^n])*Log[-(e/(d*x^(2/3)))])/2 - (3*b*n*PolyLog[2, 1 + e/(d*x^(2/3))])/2

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps \begin{align*} \text {integral}& = -\left (\frac {3}{2} \text {Subst}\left (\int \frac {a+b \log \left (c (d+e x)^n\right )}{x} \, dx,x,\frac {1}{x^{2/3}}\right )\right ) \\ & = -\frac {3}{2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (-\frac {e}{d x^{2/3}}\right )+\frac {1}{2} (3 b e n) \text {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,\frac {1}{x^{2/3}}\right ) \\ & = -\frac {3}{2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (-\frac {e}{d x^{2/3}}\right )-\frac {3}{2} b n \text {Li}_2\left (1+\frac {e}{d x^{2/3}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=a \log (x)-\frac {3}{2} b \left (\log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right ) \log \left (-\frac {e}{d x^{2/3}}\right )+n \operatorname {PolyLog}\left (2,\frac {d+\frac {e}{x^{2/3}}}{d}\right )\right ) \]

[In]

Integrate[(a + b*Log[c*(d + e/x^(2/3))^n])/x,x]

[Out]

a*Log[x] - (3*b*(Log[c*(d + e/x^(2/3))^n]*Log[-(e/(d*x^(2/3)))] + n*PolyLog[2, (d + e/x^(2/3))/d]))/2

Maple [F]

\[\int \frac {a +b \ln \left (c \left (d +\frac {e}{x^{\frac {2}{3}}}\right )^{n}\right )}{x}d x\]

[In]

int((a+b*ln(c*(d+e/x^(2/3))^n))/x,x)

[Out]

int((a+b*ln(c*(d+e/x^(2/3))^n))/x,x)

Fricas [F]

\[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int { \frac {b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a}{x} \,d x } \]

[In]

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="fricas")

[Out]

integral((b*log(c*((d*x + e*x^(1/3))/x)^n) + a)/x, x)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\text {Timed out} \]

[In]

integrate((a+b*ln(c*(d+e/x**(2/3))**n))/x,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (44) = 88\).

Time = 0.47 (sec) , antiderivative size = 127, normalized size of antiderivative = 2.31 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=-\frac {3}{2} \, {\left (2 \, \log \left (\frac {d x^{\frac {2}{3}}}{e} + 1\right ) \log \left (x^{\frac {1}{3}}\right ) + {\rm Li}_2\left (-\frac {d x^{\frac {2}{3}}}{e}\right )\right )} b n + \frac {2 \, b e n \log \left (x\right )^{2} + 6 \, b d n x^{\frac {2}{3}} \log \left (x\right ) + 6 \, b e \log \left ({\left (d x^{\frac {2}{3}} + e\right )}^{n}\right ) \log \left (x\right ) - 12 \, b e \log \left (x\right ) \log \left (x^{\frac {1}{3} \, n}\right ) - 9 \, b d n x^{\frac {2}{3}} + 6 \, {\left (b e \log \left (c\right ) + a e\right )} \log \left (x\right ) - \frac {3 \, {\left (2 \, b d n x \log \left (x\right ) - 3 \, b d n x\right )}}{x^{\frac {1}{3}}}}{6 \, e} \]

[In]

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="maxima")

[Out]

-3/2*(2*log(d*x^(2/3)/e + 1)*log(x^(1/3)) + dilog(-d*x^(2/3)/e))*b*n + 1/6*(2*b*e*n*log(x)^2 + 6*b*d*n*x^(2/3)
*log(x) + 6*b*e*log((d*x^(2/3) + e)^n)*log(x) - 12*b*e*log(x)*log(x^(1/3*n)) - 9*b*d*n*x^(2/3) + 6*(b*e*log(c)
 + a*e)*log(x) - 3*(2*b*d*n*x*log(x) - 3*b*d*n*x)/x^(1/3))/e

Giac [F]

\[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int { \frac {b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a}{x} \,d x } \]

[In]

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="giac")

[Out]

integrate((b*log(c*(d + e/x^(2/3))^n) + a)/x, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int \frac {a+b\,\ln \left (c\,{\left (d+\frac {e}{x^{2/3}}\right )}^n\right )}{x} \,d x \]

[In]

int((a + b*log(c*(d + e/x^(2/3))^n))/x,x)

[Out]

int((a + b*log(c*(d + e/x^(2/3))^n))/x, x)